2011年8月15日星期一

金刚石及相关材料纳米结构电子性质第一性原理研究

题名:金刚石及相关材料纳米结构电子性质第一性原理研究
作者:张振奎
学位授予单位:山东大学
关键词:金刚石;;硅;;锗;;量子点;;密度泛函理论;;电子结构;;量子限制效应
摘要:
 第Ⅳ主族材料(金刚石、硅和锗),一直是半导体领域研究的热点材料。随着纳米材料在上
世纪末的兴起,这一族半导体纳米材料受到了广泛关注,特别是纳米尺度的零维量子点。这些材料在
设计纳米电子,光电子器件以及作为纳米Rare earth magnets器件构造模块等方面具有很大潜力。这些体系的量子点在
纳米尺度下体现出量子限制效应,会显著改变其电子及光电子学等相关性质。本论文借助第一性原
理密度泛函计算,研究了表面和空位缺陷对金刚石、硅和锗量子点的量子限制效应的影响,涉及电子
性质,电子亲和势等。
 2003年,Dahl等人在《科学》杂志上报导了他们在实验上成功离析出纳
米量级尺寸的具有三维金刚石笼状结构和高度稳定性的碳氢化合物金刚烷,使得对sp3杂化电子结构
的实验研究推进到了分子水平。在纳米尺度下,这些量子点会体现出显著的量子限制效应,即随着尺
寸减小,通常来说能隙的价带边会下移而导带边会上移,导致能隙不断增大。2005和2006年,Willey
等人报导了这类金刚石量子点的尺寸效应实验研究结果,他们的结果表明:随着尺寸减小,金刚石量
子点的价带边会发生蓝移,而导带边没有变化。同时他们还发现导带边是由表面处的碳氢键主导,较
大尺寸颗粒的带隙要小于块体的带隙。然而,对于硅和锗量子点,价带边和导带边同时具有量子限制
效应。密度泛函理论计算也表明这两类量子点的能隙大于相应的块体带隙。实验研究还表明,氢化
金刚石颗粒具有负的电子亲和势,对开发金刚石基电子发射器具有重要意义。而氢化的硅和锗量子
点则具有正的电子亲和势,且电子亲和势的数值随量子点尺寸增大而增大。对于由碳和硅这两种元
素组成的化合物半导体碳化硅量子点,实验http://www.chinamagnets.biz/结果也表明其电子结构和性质及其电子亲和势在一定的
条件下也具有量子限制效应,但是相关的理论研究还比较滞后。
 对这一族材料量子点的研
究还涉及到磁学性质,如经过氮和碳元素离子注入的金刚石纳米颗粒具有室温铁磁性。2007年,Liou
等人报导了纳米锗颗粒具有室温铁磁性,同时还受量子限制效应的影响。
 众所周知,纳米
体系具有较大的比表面,因而表面对其性质有着极其重要的影响。在本论文中,我们借助密度泛函理
论计算研究了表面环境和重构对金刚石材料电子结构和性质的影响,以及C、Si和Ge纳米颗粒中空位
缺陷引起的自旋极化及其量子限制效应,并研究了由C和Si元素组成的碳化硅半导体量子点的电子结
构尺寸效应。
 在本论文中,第一章简要回顾了第Ⅳ主族量子点材料的研究背景,以及需要解决的
问题,阐明了本论文研究的意义。并对量子限制效应的产生根源做了简要说明。
 第二章简要介绍
了密度泛函理论的基本框架和近年来的理论发展。密度泛函理论的发展以寻找合适的交换相关能量
泛函为主线。从最初的局域密度近似(LDA)、广义梯度近似(GGA)到现在的杂化泛函,使计算结果的
精确度越来越高。最后对本论文工作所采用的主要程序ADF做了简要介绍。
 第三章主要讨论
了表面重构对氢化金刚石纳米颗粒的几何结构、稳定性、电子结构和电子亲和势的影响和作用。计
算结果表明几何结构的变化可以在一定程度上调控禁带宽带。最低非占据分子轨道空间分布表明电
荷分布主要依赖于表面碳氢键的键长,而不是表面的碳氢基团。对此我们对这一现象的起因做了详
细地分析。对电子亲和势的研究结果表明:在表面碳原子被氢原子饱和的前提下,随着氢覆盖度的
降低,负电子亲和势的数值呈现下降趋势,分析表明这是由于碳氢偶极矩的加强导致的。这些研究结
果可以为纳米尺度金刚石基光电和电子发射器件的设计提供有益的帮助和借鉴。
 第四章研究了表
面不同碳氢基团与金刚石纳米颗粒的几何结构,电子结构和电子亲和势及稳定性的相关性。研究结
果显示,由于甲基CH3构型的存在,当尺寸大于1nm时,这类颗粒的能带隙大于不含甲基颗粒的能带隙,
也大于块体金刚石的禁带宽度。电子结构研究表明,最低非占据分子能级是由表面碳氢键提供的,这
与实验上观测到的X光吸收光谱特征相一致。此外,我们还发现对于氢饱和的金刚石纳米颗粒,其负
电子亲和势性质依赖于表面上碳原子与氢原子数的比值C/H。
 第五章研究了金刚石,硅和锗纳米
颗粒中空位缺陷态引发的自旋极化以及缺陷态之间的磁耦合作用。研究结果表明,在金刚石纳米颗
粒中,缺陷态具有自旋极化的基态而且这一性质不随颗粒尺寸的增大而改变,即不具有量子尺寸效应
。但对于硅和锗纳米颗粒,只有在尺寸很小时空位才会引发自旋极化的基态,即具有量子尺寸效应,
这与实验上观察到的磁现象结果一致。另外,我们还发现在金刚石纳米颗粒中空位引起的缺陷态在
邻近的位置形成铁磁耦合,而在硅和锗纳米颗中相应的位置却易于形成反铁磁耦合。
 第六章
通过密度泛函理论计算和化学键分析,研究了氢原子饱和的第Ⅳ主族及其组合量子点的量子限制效
应和电子亲和势。结果表明碳化硅(SiC)和碳锗(GeC)量子点的最高占据分子轨道(HOMO)展现出量子
限制效应,而这些量子点的最低非占据分子轨道(LUMO)不显示量子限制效应。当表面被碳氢键终结
时,碳化硅和碳锗量子点表现出具有负的电子亲和势,而被硅氢键或锗氢键终结时,体系的电子亲和
势则为正值。化学键分析表明第Ⅳ主族量子点在量子限制效应和电子亲和势方面的上述差异起源于
最近邻和次近邻原子的价层p轨道之间的相互作用。
 第七章对本论文进行了总结,并对以后工作
做了展望。本论文在密度泛函理论框架下从理论上研究了不同的表面碳氢基团和表面重构对金刚石
纳米颗粒性质的影响,研究了空位缺陷在金刚石,硅和锗量子点中自旋极化的量子限制效应,对相关
实验给出了很好的解释;并对碳化硅量子点电子结构的量子限制效应做了预测,并结合已有的结果
做了深入的理论分析。
学位年度:2010

标签:

0 条评论:

发表评论

订阅 博文评论 [Atom]

<< 主页